UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 1st Semester Examination, 2021

CC1-MATHEMATICS

Calculus, Geometry and Differential Equation

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.
All symbols are of usual significance.

GROUP-A

1. Answer any four questions:
(a) If $\lim _{x \rightarrow 0} \frac{e^{x}-a e^{x \cos x}}{x-\sin x}$ exists finitely, find the value of a. Then find the value of the limit.
(b) Show that the curve $y=e^{-x^{2}}$ has points of inflexion at $x= \pm \frac{1}{\sqrt{2}}$.
(c) If $I_{n}=\int_{0}^{\pi / 2} x^{n} \sin x d x$ and $n>1$, show that $I_{n}+n(n-1) I_{n-2}=n(\pi / 2)^{n-1}$.
(d) Find the area in the first quadrant included between the parabola $y^{2}=b x$ and the circle $x^{2}+y^{2}=2 b x$.
(e) Show that the length of the focal chord of the conic $\frac{l}{r}=1-e \cos \theta$ which is inclined to the initial line at an angle α is $\frac{2 l}{\left(1-e^{2} \cos ^{2} \alpha\right)}$.
(f) Prove that the differential equation of all circles touching the y-axis at the origin
 is $\left(y^{2}-x^{2}\right) d x-2 x y d y=0$.

GROUP-B

2. Answer any four questions:
(a) Find the envelope of the curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where the two parameters a and b are connected by the relation $a+b=c, c$ being a fixed constant.
(b) Prove that the volume of the solid obtained by revolving the lemniscate $r^{2}=a^{2} \cos 2 \theta$ about the initial line is $\frac{1}{2} \pi a^{3}\left\{\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)-\frac{1}{3}\right\}$.
(c) Find the asymptotes of the curve $\left(x^{2}-y^{2}\right)(x+2 y+1)+(x+y+1)=0$.
(d) If $P S P^{\prime}$ and $Q S Q^{\prime}$ are two perpendicular focal chords of a conic, prove that $\frac{1}{S P \cdot S P^{\prime}}+\frac{1}{S Q \cdot S Q^{\prime}}=$ a constant.

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC1/2021

(e) A sphere of constant radius r passes through the origin O and cuts the axes in A, B,
C. Prove that the locus of the foot of the perpendicular from O to the plane $A B C$ is given by

$$
\begin{equation*}
\left(x^{2}+y^{2}+z^{2}\right)\left(x^{-2}+y^{-2}+z^{-2}\right)=4 r^{2} \tag{6}
\end{equation*}
$$

(f) Solve $x \cos \frac{y}{x}(y d x+x d y)=y \sin \frac{y}{x}(x d y-y d x)$.

GROUP-C

Answer any two questions

3. (a) Obtain the limit of $\lim _{x \rightarrow \infty} \frac{e^{-2 x}(\cos x+2 \sin x)}{e^{-x}(\cos x+\sin x)}$.
(b) Show that the pedal equation of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with respect to the centre as pole is $\frac{a^{2} b^{2}}{p^{2}}=a^{2}+b^{2}-r^{2}$.
4. (a) Show that the volume of the solid formed by revolving one loop of the curve $r^{2}=a^{2} \cos 2 \theta$ about the line $\theta=\frac{\pi}{2}$ is $\frac{\pi^{3} a^{3}}{4 \sqrt{2}}$.
(b) If $2 \frac{d r}{d \theta}+r \tan \theta=\frac{1}{r \cos \theta}$ and $r=1$ when $\theta=0$. Show that $r=4 \sqrt{2}$ when $\theta=\frac{\pi}{4}$.
5. (a) Find the equations of the parabolas passing through the common points of $x^{2}+6 x y-y^{2}+2 x-3 y-5=0$ and $2 x^{2}-8 x y+3 y^{2}+2 y-1=0$.
(b) Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+2 x-4 y+2 z+5=0, x-2 y+3 z+1=0$ is a great circle.
(c) Show that the plane $12 y+z-2 x-16=0$ intersects the paraboloid $x^{2}-4 y^{2}=2 z$ in two generators $\frac{x}{2}=\frac{y-2}{1}=\frac{z+8}{-8}$ and $\frac{x}{2}=\frac{y-4}{-1}=\frac{z+32}{16}$.
6. (a) Transform the differential equation $\frac{d y}{d x}+\frac{y}{x} \log y=\frac{y}{x^{2}}(\log y)^{2}$ into a linear form and then solve it.
(b) Show that a differential equation of the form

$$
\left[y+x f\left(x^{2}+y^{2}\right)\right] d x+\left[y f\left(x^{2}+y^{2}\right)-x\right] d y=0 \text { is not exact. }
$$

Show that $\frac{1}{x^{2}+y^{2}}$ is an integrating factor of an equation of this form.
Hence solve, $\left[y+x\left(x^{2}+y^{2}\right)^{2}\right] d x+\left[y\left(x^{2}+y^{2}\right)^{2}-x\right] d y=0$.

